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Overview
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•Use spectrometers to monitor high explosive 
(HE) events in infrared region:
–Spectrometers measure radiance in many (100s) of spectral bands.
–Sensors give information on the fireball such as temperature, size, 

soot quantity and gas species concentrations (CO, CO2, H2O, etc.).
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Objective of Data Analysis
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Models for gas species molar fractions in mixed HE/air zones
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• Develop methods to extract fireball information from remotely 
sensed infrared data with hundreds of spectral bands.
– Recent work looks at machine learning and deep neural networks.

• Validation of computational physics codes that simulate HE or 
similar events (equation-of-state (EOS), metal fragmentation, soot).



Spectrometer Resolution and FTIR
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• Tradeoff between different resolutions                                              
(spatial vs temporal vs spectral):
– Sensors often sacrifice one type of resolution to improve the other two.

• This presentation considers specific FTIR spectrometer:
– FTIR (Fourier Transform Infrared): raw data is an interferogram.
– Single pixel, ~16 cm-1 spectral resolution, ~0.01s temporal resolution.
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Fireball Radiance Model
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Methods previously applied: Physics-based fitting, 
optimization, and Bayesian calibration.

At-sensor radiance model R(.) with gas 
and soot (no additional solid materials):

gasessootarea Blackbody 
function

Atmospheric
transmission

Fit parameters in red
TFB is fireball temperature
l2 is fireball area
κp is soot absorption coefficient
σi is gas cross sections
ξi is gas concentrations in #/cm3

Goal is to find fireball parameters in model R(.) that best fit data.



Model for Fireball Radiance
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At sensor radiance given by: 

Red curve is blackbody 
scaled by the fireball area.

Blue curve is FTIR.

Green curve is atmospheric 
transmission applied to 
blackbody.
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Mismatch between green curve and 
data (blue) is due to fireball selective 
emission from fireball gas constituents.



Computational Challenges
Spectral model is computed at 

high resolution: 0.001 cm-1
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Instrument Line Shape (L)

T = 1195K,   l = 330cm,  
soot (cm-1) = 0.001,                                      
XH2O (#/cm3) = 7.3E17,
XCO2 (#/cm3) = 1.7E18,                              
XCO (#/cm3) = 9.2E16.
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Then convolved with a sensor 
response or line-shape L



Machine Learning
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• Applying machine learning to artificially generated spectra:
– Experimental data has no ground truth!
– Analysis of artificial data to evaluate the accuracy of methods.

• Deep and shallow learning applied to problem:
– Deep learning for full evaluation of regression accuracy.
– Shallow learning with physics information and determination of important 

spectral bands.



Generation of Artificial Data Set
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• “Easy” data set of ~400,000                                                                               
artificial spectra:
– Diameter kept constant at 3 meters.
– Additive noise at ±0.5%;                                                                             Narrow sensor 

narrow line-shape.
– 360,000 for training & testing; 

36,000 for validation

• “Hard” data set of ~400,000                                                                            
artificial spectra:
– All six parameters varied.
– Additive noise at ±1%;                                                                                                  

wide sensor line-shape.

Parameter Lower
Bound

Upper 
Bound

T (K) 800 2200
diameter (m) 2 8
soot (cm-1) 1E-7 0.04

H2O (#/cm3) 1E17 1E18
CO2 (#/cm3) 1E17 2E18
CO (#/cm3) 1E14 1E17

Data generated by sampling each parameter 
uniformly, except for soot. 

Soot sampled such that the emissivity due to        
soot is uniform.

• Data with 388 spectral bands 
~1900 to 5000 cm-1



Deep Learning on Artificial Data
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Tested NN with many layers, including convolutional layers.

Compared results to Physics-based method of Slagle (AFIT thesis, 2009).

Fireball area kept constant to make problem easier (T, area, and soot are 
highly correlated)



Networks with Single Hidden Layer
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• What would the results be with a single hidden layer (HL)?
– How many nodes/neurons are necessary for a good model?
– Convolutional layers are counter-intuitive, especially for uncovering gases.

Parameter Deep NN
S1

Single HL
S1 / S2

T 0.009 0.009 / 0.008
soot 0.093 0.070 / 0.091
H2O 0.087 0.114 / 0.097
CO2 0.094 0.110 / 0.111
CO 0.160 0.165 / 0.420

Fireball area kept constant.

S1 is RMSE/mean.

S2 is average relative error.

Validation statistics obtained 
from a set of 36000 artificial 
spectra.

Number of neurons for single 
HL varied from 128 to 2048 in 
a grid search.



Results with Varying Fireball Size
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• Temperature, fireball diameter, and soot quantity are highly correlated:
– All three impact magnitude of fireball radiance.
– Soot is a gray-body (emission is independent of wavenumber).
– Hard to include all three as unknown in the data.

Para-
meter

“Easy” Data 1
S1 / S2

“Hard” Data 2
S1 / S2

T 0.009 / 0.008 0.006 / 0.004
diameter NA 0.012 / 0.009

soot 0.070 / 0.091 0.240 / 0.050
H2O 0.114 / 0.097 0.203 / 0.141
CO2 0.110 / 0.111 0.286 / 0.199
CO 0.165 / 0.420 0.522 / 0.656

Data 1: fireball size kept constant.

Data 2: all parameters vary.

Validation statistics obtained from 
a set of 36000 artificial spectra.

For soot and gases, output labels 
y transformed by log(y).



Are Better Results Possible?
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• Why do the gases become harder to estimate?
– Radiance is a smooth function of temperature,          

size, and soot.
– Would think that estimators could discern gases      

from non-smooth structure across bands.

• Tested compensating data for temperature 
and size:
– Build estimator for T and size.
– Apply to a data set, divide out impact of T and 

size, then fit to the other parameters.

𝑅𝑅(𝜐𝜐)
𝑙𝑙2𝐵𝐵(𝑇𝑇𝐹𝐹𝐹𝐹, 𝜐𝜐)

= 𝜀𝜀𝐹𝐹𝐹𝐹(𝜐𝜐)𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝜐𝜐)

THIS DID NOT WORK! RESULTS WERE WORSE!



Are the Results Misleading?

Los Alamos National Laboratory 5/10/2020 |   14

LA-UR-20-xxxxx

If soot concentration is large enough, estimates for the gases 
are unreliable:

– Soot makes the fireball opaque:
– Should estimate emissivity of soot and if it’s close to one,                      

then it is likely that the gas estimates have high uncertainty.

𝑅𝑅 𝜐𝜐 = 𝑙𝑙2 1 − 𝑒𝑒−𝑙𝑙𝑘𝑘𝑝𝑝−𝑙𝑙 ∑ 𝜉𝜉𝑖𝑖𝜎𝜎𝑖𝑖(𝜐𝜐) 𝐵𝐵 𝑇𝑇𝐹𝐹𝐹𝐹, 𝜐𝜐 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝜐𝜐)

Create a new label (output) equal to                  
soot transmissivity 𝑒𝑒−𝑙𝑙𝜅𝜅𝑝𝑝:

Training single HL network on this output                    
resulted in RMSE of 0.039 on a validation set.

soot transmissivity

soot ratio prediction vs actual



Soot’s Impact on T and Size
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soot transmissivity

T ratio prediction vs actual

soot transmissivity

diameter ratio prediction vs actual

Results from a validation data set.



Soot’s Impact on H2O & CO2
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soot transmissivity soot transmissivity

H2O ratio prediction vs actual CO2 ratio prediction vs actual



Soot’s Impact on CO
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soot transmissivity

CO ratio prediction vs actual



Conclusion
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• Next Step (1): Examine outliers in prediction.
– Why is it difficult to predict the fireball parameters for some spectra?

• Next Step (2): Reverse fitting to uncover most “important bands”
– Train a network to predict spectral band given the six parameters.
– Bands that can be accurately predicted are “important”.

• Analyzing artificial fireball spectra:
– Develop methods for recovering fireball parameters.
– Validation and improvement of computational physics codes.
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